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Abstract. For the classical Painléequations, besides the method of similarity reduction of Lax
pairs for integrable partial differential equations, two ways are known for Lax pair generation. The
first is based on the confluence procedure in Fuchs’ linear ODE with four regular singularities
isomonodromy deformation which is governed by the sixth Pagnézuation. The second method
treats the hypergeometric equation and confluent hypergeometric equations as the isomonodromy
deformation equations for the triangular systems of ODEs, in whose non-triangular extensions give
rise to the Lax pairs for the Painlewquations.

The theory of integrable integral operators suggests a new way of Lax pair generation for
the classical Painlévequations. This method involves a special kind of gauge transformation that
is applied to linear systems which are exactly solvable in terms of the classical special functions.
Some of the Lax pairs we introduce are known, others are new. The question of gauge equivalence
of different Lax pairs for the Painléequations is considered as well.

1. Introduction

The Painlee equations [1-3], originally found as the only irreducible second-order ordinary
differential equations (ODES),, = R(x, y, y,) rational iny,, algebraic iny and analytic in

x such that their general solutions have no movable branch points and essential singularities,
are known to govern the so-called isomonodromy deformations of certain linear differential
equations with rational coefficients. In other words, the Paskyuations can be written in

the form of compatibility conditions for some over-determined linear systemso2§2natrix
equations which are now called the Lax pairs.

The first such system was found by Fuchs [4] who investigated the isomonodromy
deformations of the linear Fuchsian second-order scalar ODE with four singular points. Fuchs
revealed that preserving the monodromy properties of such a linear equation, with necessity,
leads to deformations of its coefficients in accord with the sixth Paéngyuation (PVI).
Observations that other Painkeequations can be obtained by the use of certain scaling limits
from PVI [5, 3] gave rise to consideration in the articles of Garnier and Boutroux [6, 7] of the
confluences of singular points in the Fuchs’ linear equation for PVI and to the pairs of linear
equations for all the Painléequations [6] written in the equivalent matrix form by Jimbo and
Miwa [8]. Below, we call the pairs the Garnier systems, or the Garnier pairs.

Another way of generating Lax pairs for the Pairlezquations was introduced in [9].

The authors have shown that the Airy, Bessel and parabolic cylinder equations [10] can be
written as the compatibility conditions for triangular ¥22) matrix systems. Non-triangular
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8146 A A Kapaev and E Hubert

generalizations of these Lax pairs yield the Lax pairs for the Pardguations of the second,
third and fourth kind, respectively.

In the present paper, we explain a new scheme of generating Lax pairs of the classical
Painlewe equations which allows us to elucidate another relationship between the linear and the
nonlinear special functions, i.e. between (confluent) hypergeometric functions and €ainlev
functions. The idea of this scheme comes from the fact that there exists a close relationship
between the integrable integral operators, the Riemann—Hilbert problem and isomonodromy
deformations of the linear equations with rational coefficients, discovered by Its, Izergin,
Korepin and Slavnov [11].

Consider an integral operator in the proper functional class on the set of finite intervals
I'= U;:O(af; aj+1),

(Ky)(A) = /F K&, w)y(u)du Luel cC 1)

with the scalar kernel of the form introduced by Troy and Widom in [12] (for more general
situations see [13, 14])

oMy (p) — ey ()

K, pn) = ; (2)
-
where the vectors
_ (¥ _ (e
are related to the linear differential equation
df _ _ as a+
i Ao(M) f Ao = <a_ —as) 4)

with Ag rationally dependent oh.

The first example of such kernels, introduced in [15] for a description of the quantum
correlation functions and in [16] for a description of the classical level spacing distribution
function in the ‘bulk’ of a spectrum of the Gaussian unitary ensemble (GUE), is the famous
sine kernel

sinw (A — w)
K p)=——- 5
o) == ()
with the exponent functiong(i) andyr (1),
i —imTA
o) = P v(A) = P

The corresponding linear matrix (equation (4)) is a constant digital matrix,

iT 0
o= (5 2)
Surprisingly, the Fredholm determinant of the integral operator with kernel (5) on the segment
(—x; x), det — K x(0.x)), Where we denote byr the characteristic function of the st is
related to the classical fifth Painieequation (PV).
The next examples of such a kind are presented in [17, 18]. The first is the Airy kernel

KO, ) = Ai(k)Ai/(uz: ;xi’(A)Ai(u)

(6)
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whereAi (1) andAi’()) are the classical Airy function and its derivative [10], which describe
the level spacing distribution function for the GUE at the ‘edge’ of a spectrum. The second is
the Bessel kernel

Jo (V) I, (1) = VAL (V) Jo (/10)
K, p) = (7)

20 — )

for the ‘hard edge’ of this spectrum at= 0. In the Airy kernel case, in our notation, the
functions

o(A) = Ai()) (L) = Ai'(D)
with the Airy function Ai (A) form the vector solution of (4), with the matriky (1) given by

a = (3 %) ®)

In the Bessel kernel case, the functions
o\) = Ju (V)2 Y () = VAJL(VA)
with the Bessel functiod,, (x) yield the vector solution of (4) with

0 1/4
1000 = (g vy o) ©

As shown in [17, 18], Fredholm determinants of such operators on the half-infinite interval
(x, +o0) are related to the second and third Paiglequations (PII, PIIl) respectively.

Some kernels, ‘beyond Airy’, introduced in [12] are expressed in terms of Hermite,
Laguerre and Jacobi polynomials and related to the fourth, fifth and sixth Paiedmations
(PIV, PV and PVI, respectively).

Following [12, 13], let us introduce the functio@sandG as the solutions of the integral
equationsF =9+ KF,G =y +KG, i.e.

F=Q1-K) 1 G=(U-K)ty (10)
and the matrix functiofy (1) by the use of the Cauchy integral
F T
YO) =1 — / Fws W) g, (11)
r MH—A

It follows from the properties of the Cauchy integrals (see, e.g. [19]) that this function is
holomorphic outsidé’, normalized to the unit at infinity, may have logarithmic or integrable
algebraic singularities at the pointg € aT" and is characterized by the jump bn

(=Y eG) PR
Yo(A) =Y_(WMH®O) HO) =1 — 2xi < o200 W(A)w(k)> rel. (12)
The special form of the jump immediately leads to a very specific gauge transformation of the
matrix (2 x 2) equation
do
5 = Ag(M) . (13)
Indeed, letd (L) be a fundamental solution of (13), i.e. deth) = 1. Then the vector
) = (¥ (V); e(1)T is given by the product

fF)=e@)p p= (Z) = constant (14)
At the same time, the vectgi(A) = (—p(1); ¥ (1))" is given by the product

g = (@M Ny q= (;p) = constant (15)
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Therefore, the produeb—1 (1) H (A)® (1) does not depend on
N 2
O LOVHO)DR) = I — 27i ( _’; H gq) — constant (16)

Thus the new ( 2) matrix function
W) =YR)DMR) 7
has constant jump of and satisfies a linear differential equation [14]

dw
dx
with the matrixA, rational ini, related to the ‘vacuum’ matriXo by the equation

= AV (18)

A=Y Ay t+Yv,Y L (19)

The above-mentioned Riemann—Hilbert probleman.) (for details, see [14]) contains
natural isomonodromy deformation parametgrg oI", so that besides the equatiorniil8)

o e A
o= AWMV = <A0(A) +; — aj)w (20)

whereA ; are constant matrices arg () is a matrix, rational irk, with no singularity at;,
the function¥ (1) satisfies

dv = U)W = <— 3 - Aj daj>\p. (21)
J

_aj

The compatibility condition for the system (20) and (21),
U
dA — —+[A =0 22
o T1A U] (22)

which holds identically irk, gives rise to the system of nonlinear differential equations called
the system of isomonodromy deformations [8].

Below, we show that, in the simplest situations, such systems reduce to second-order
ODEs that are equivalent to some of the classical Pagnkxyuations. The investigation
described in this paper was essentially simplified by the use of symbolic computations based
on simple manipulations oMlaple V. The reductions of the compatibility condition systems
(equation (22)) to Painlévequations are computed according to an algorithm in differential
algebra as presented in [20]. In practice we usedMhaple V.5.1packagediffalg, which is
the implementation of such an algorithm. Information about this package can be found on the
web pagenttp;//daisy.uwaterloo.ca/ ehubert/Diffalg.

Actually, the Lax pair for the 34th Painlévequation (P34) from the list of Painkand
Gambier [3] that is related to the Airy kernel was found ‘by hands’ in [14] and is the gauge
equivalent to the pair of Flaschka and Newell [21] for PIl. The new Lax pair for Plll is found
by use of symbolic computation. The Lax pair for PIV, related to the integral operator with
the Weber—Hermite kernel of the first kind (41) and (42), coincides up to a diagonal gauge
transformation with the pair of Garnier [6, 8]. The Weber—Hermite kernel of the second kind
(54) and (55) leads to another Lax pair for PIV evaluated by the use of symbolic computations.
We show that this Lax pair, as well as the pair for PIV found in [23], are both gauge equivalent
to the pair of Garnier. Finally, we observe that the Garnier systems [6, 8] for PV and PVI are
related in the very same way to the Whittaker and hypergeometric kernels, respectively.
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2. Airy kernel and PII

The simplest non-trivial example of the Lax pairs related to the integral operators (1) with the
Tracy—Widom kernel (2) and (3) is the pair coming from consideration of the operator with
the Airy kernel (6) on the rayx( co). This example is found and investigated in full detail in
[14]. Here, we give an overview.

The ‘vacuum’ matrix, equation (13), has the form of (8), and because the gauge matrix
Y (1) tends tol at infinity and the contouf’, in this case, consists of the ray; (o), the
perturbed matrix equation is characterized by the matrix (19) of the Jordan form in the main
order at infinity, with the only regular singularity at= x:

wet=a=(] ) (0 2) @
R S S (p q). (24)
A—x \r -—p
The compatibility condition of (23) and (24) is equivalent to the system of equations
b=—r—a®
p=ar+ey—r3+xr2 —ar + 12 =1
g=r®>—a’ —xr+a — 2aey/—r3+xr2 —ar +12
a, =r
re = 2ey/—r3+xr2 — ar + 12 v = constant (25)

The last two equations of system (25) yield the second-order ODE for the fumction

2 2
)7 g2 e — 22 (26)
r r
which up to scaling change ofandx coincides with the classical P34 equation from the list
of Painleee—Gambier [13].
The Lax pair (23) and (24) is gauge equivalent to the Lax pair of Flaschka and Newell

[21]

Iyxx =

=yy™ (27)

9E ar
with the matrix coefficientsd andi/ defined by

Ao CiAEHr+ 2y i(4ys+(a/s>>—2z) _(—iE iy 28)
T\ iyE+ (/) — 2z i(4E2+1+2y?) — iy ig )

The compatibility condition of (27) and (28),

Vi =2 =2y +ty—« o = constant (29)
is equivalent to PII

ye =2y +1y —a o = constant (30)

The gauge equivalence of the Lax pairs (23) and (24), and (27) and (28) is given by

WL, x) = 20%/6 (é Li) 503/2%2 (—1| —1i ) WNE 1)

A= 2232 _ 7Y% x=—2"Y3% (31)
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where the functiom (¢) satisfies the equation

1 t
u;+§<z—y2—§)=0. (32)

The function¥ (A, x) defined by (31) solves the system (23) and (24) with the coefficients

a:21/3(y+u) b:—22/3(y+u)2+2_1/3 <z+y2+%>

1 t 1 t
P=—%+Z—u<z+y2+§> q=21/3u|:a—§+u<z+y2+§>]
t
r=—2"13 <z+y2+§). (33)

Inversion of the gauge transformation (31) is given by the formula

UNE 1) = S <.1 i) e 1T/Mo3 () — x)~o3/4 (é 'i) W(A,x)

V2 \
£ = @m/22718() — x)¥/2 r =23 (34)
where the function(z) is defined by the equation
+
v=_PZY_ o3, (35)

,
The functionw™N defined by (34) solves the system (27) and (28) with the parameters

y =213 +v) a:%:l:Zv
7=2"2Bx =23 — 2728(q + v)2. (36)

The equations (33) and (36) establish the knovétlBund transformation between PII
and P34 [3].

Note that the.-equation in the Garnier system for PIl found in [6, 8] has the only irregular
singularity at infinity. This fact suggests there is no algebraic gauge transformation between
the Lax pairs of Flaschka and Newell [21] and Garnier [6, 8].

3. Bessel kernel and PlIII

Let us consider the integral operator Bn= (x; co) with kernel (7) related to the ‘vacuum’
equation (equation (13)) with the matrig given by (9). Sincelg is a Jordan matrix at infinity

and the matrix of gauge transformatiii,) behaves likd there, the matrixd, coming from

the matrix representation for the Bessel equation, is also Jordan at infinity and has the only
singularity ath = x (for our convenience, we have used before some constant transformation
to make the Jordan block of the standard form):

a_,_ (0 1\,1/a b 1 P q
W, W _A_<O 0 +)\ ¢ —a +_A—x ro—p (37)
1
wx\p—le:——(p 1 ) (38)
A—x \r -—p
The compatibility condition for the system (37) and (38) is equivalent to the system of equations
-1
b=(a2—u2)—y c=——'0
o y—1
X Yx y = 1

p=3

2 2
—ay qg=—(p°—r9)
2y-1 Py
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_ Py
y—1
» . 2 1 2
PP 1)) 2+_<sz_”_>
y—1 4y(y-17 «x y
0, 1, v = constant (39)
where the functiory satisfies the second-order ODE
1 1 ye | 20y —1)? v2\ | 2p
Yao=(o+ el 75 Tl K O (40)
2y y-1 X X y X

Equation (40) is the special case of PV [1] with the parameters
o =2u? B =—2v2 y =2p §=0.
It is well known [22] that equation (40) is equivalent to the general PlIl equation.
Since the known Lax pair for the PlIl equation [6, 8] has two irregular singularities at zero

and infinity, there is no algebraic gauge transformation between the Garnier system for Pl
and (37) and (38).

4. Lax pairs for PIV

In this section we describe several Lax pairs that come from applying the gauge
transformations (17) and (19) to the matrix equations that are exactly soluble in terms of
parabolic cylinder functions and show their algebraic gauge equivalence to the Garnier system.

4.1. Weber—Hermite kernel and PIV. Case 1

Let us consider the integral operator (1) with the kernel (2) on th€ ray(x; co) wherep (1),
¥ (1) are given by the parabolic cylinder functions [10]

d?w, 2 1
e =w,(V2) Y () = w, (V2N n@ _ (z— v —) w,(2).  (41)
dz 4 2
For an integer = N and polynomiakwy (z) /2, such a kernel was introduced in [12].
Becausev,_1(z) = (v/2/v)(w/(z) +(z/2)w,(z)), wherev # 0 does not depend anthe
vector f (1) = (¥ (1); ¢(1))T solves equation (4) with the matrix

Ao()) = (ﬁ —M,\) u = —%. (42)
The gauge transformation (17) yields the Lax pair
\ykxyle(x,x)=<k:a —xb—a)J'%(f _‘1p> (43)
1
AR 1=U(x,x)=—m(1;7 _qp) (44)
which is compatible if
a, =0
b, =2q
Cy = —2r
(45)
px=br —cq
gx = 2(x +a)q — 2bp
re = —2(x +a)r + 2cp.
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This system allows the integrals
a = ap = constant
a’?+bc+2p = p = constant (46)
p?+qr = y? = constant
Moreover, without loss of generality, we put
a=ay=0 (47)
that is equivalent to a simultaneous shifxadndx in the constantg. As to other integrals in
(46), the parametes describes the formal monodromy of the functirat infinity, while y
has the same sense for the singular poiet x. Using the integrals, we excluge
_ p—bc
2
and one of the functionsor ¢,

(48)

1 1
r=-—4y?— (bc — p)? or q= 5<4y2 — (be — p)?) (49)

4q
to reduce the system (45) to one for the functibns andg (or r):
= 1 1
bx = qu’ 1 by == (23/2 — 5(be - p)2>
r
Cy = —5 <2)/2 — E(bC — p)z) or cy = _2r (50)
qx = 2xq +b(bc — p) re = —2xr — c(bc — p).

Elementary computation shows that the functighs= —2¢/b and R = —2r/c satisfy the
classical PIV equation [3]

2 2
0=-21. Qxx=i+gQ3+4XQ2+2(x2+p+1)Q—% (52)

with the parameters
a=—p-—1 B = 16y°.
Moreover,b satisfies the first-order, linear ODE and becomes the so-called auxiliary function

by
S =0 (52)
while all other coefficients are determined uniquely:
= (50450704 = —e—p)
CTp T TR TR p=mpbeme
— 2o = 11 (4y? = (be = p)?)
q = 5 r= Y c—p)).
Similarly,
2r R? 3 8y?
R=-"": Ry = ==+ ZR3+4xR?>+2(x*+p— 1R — —
- TR X (x“+p—-1) R (53)

which coincides with PIV [3] with the parameters
a=—p+1 B = 16y?

Cy 1/1 1, 1
— =R b=—-(=zR,+=R°“+xR+p p=—=(bc—p)
c c 2 2

while

2

- Lk —1<42<b )%)
r= 2c q—4r)/ c—p)).
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4.2. Weber—Hermite kernel and PIV. Case 2

Another kind of integral operator on the r@y= (x; co) with the kernel (2) is determined by
the functionsp (1), ¥ (1) given by the parabolic cylinder function and its derivative:

2 2
o =wB) v =VRWD) oD o (% —v- %) (). (54)

Now, the vectorf (1) = (¥ (1), ¢(1))T solves (4) with the matrix

2 o
Ao(k)z(g A %" 1).

The gauge transformation (17) yields the Lax pair of the following form:

2 1
\-If,\\ll_le()L,x)z(aA*-u A +bk+v>+ (p q ) (56)

(55)

w —air —u A—x \r —p
1
R 1=U(x,x)=—/\_x<’r’ _qp) (57)
with the compatibility condition
a, =r
by =—2p
uy = b +x)r
vy = —2p(b +x) +2aq =)
w, = —2ar
px = xr(b+x)+vr —wgq
qr = —2xp(b+x) +2xaq + 2uq — 2pv
ry = —2xar — 2ur + 2pw
which allows the integrals
a?+w=1
2au+r2+bw=0 (59)
2ap+tu“+ b +x)rtvw—a=p p = constant
pZHqr=y2 y = constant

As before, we chose the concrete values of the consténtsw and Zuu + r + bw without
loss of generality because these parameters are related to the affine transformatiofi% of the
space of pairsi(, x); so putting these constants to unity and zero, respectively, we do nothing,
but fix a certain origin and scales.

In contrast, the parametersand y describe formal monodromy of thé&-function at
infinity and at the poink = x, respectively.

Using the integrals (59), we reduce the system (58) to the system of four first-order
equations for the functions, b, p andr, and observe that the rat® = —2r/w satisfies the
PIV equation [3]

2r R? 3 8y?
R=-—": Ry = ==+ “R3+ & R*+2(x* + p)R — —— 60
w x 2R 2 X (x 0) R (60)

with the parameters
a=-p  B=16y°
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while the functions: andb satisfy the first-order ODE and become auxiliary functions

ay 1 a’?—1 1 a’?+1

=_R by = > Rb+§Rx+xaR+ R

a?-1 2
The rest of the coefficients are determined uniquely by the expressions
1-a? 1 1 1
u= 4 (R —2b) w=1-a? p:—ZRx—E(xa+u)R—ZaR2

2_ .2 1 1
P Y V= (a+,0—2ap—u2)+§(b+x)R.

N A
q (1—-a®R 1—a2

4.3. Gauge equivalence of the Lax pairs for PIV

4.3.1. Gauge equivalence of the Garnier system and (43) and (44mbo and Miwa [8]
presented the Lax pair originated in the work of Garnier [6], which, after proper change of
notation and the shift of in x, can be written in the following form:

a\I_,JM B\IJJM

= ApM — =yyM 61
oA A dIx (61)
with the connection coefficientd andi/ defined as follows:
A u 1 -z =%
A:(f(z—r) —A>+)\—x<%;92) . ) (62)
1 -z =2\
U= —X03 — m (2(11;@2) z ) . (63)

The matrix.A4 (62) with proper change of notation coincides with the ma#ix43), but the
matrix 4 (63) contains an extra termxos in comparison with (44). This term can be
eliminated by the diagonal gauge transformation that is independent.ef

WL, x) = -0y x), (64)

4.3.2. Gauge equivalence of an alternative Lax pair and (43) and (44hother Lax pair for
PIV found by Kitaev [23] and later by Milnet al [24],

owk Wk
— = ApK — =yyK 65
aA A ax (65)
A %A3+A(x+uv)+% i(A2u + 2xu +u') (66)
o i(A2v + 2xv + V) —%)»3+)»(x+uv)+%
1,2 i
sA°+uv 1Au
u=\2". 67
( irv —%kz—uv) ©7)

comes from the Lax pair of Kaup and Newell [25] for the modified nonlinear &@tihger
(MNS) equation by the use of similarity reduction of the MNS equation to the PIV equation
of Ablowitz et al[26]. This pair is also gauge equivalent to the Lax pair (61)—(63). Indeed, if
WK (x, x) satisfied (65)—(67), then

W, x) = eFnl2 (é I;) (20, — )™/BWK (/200 — ). x) (68)
satisfies our first-degree Lax pair (43) and (44) with

a=0 b =ie" (u — uv) c=ie" v p=

_ e +l +uv’ e Luv
q = —iu o 5 Xuv > r= » XUuv > )
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4.3.3. Gauge equivalence of (43) and (44), and (56) and (5The Lax pairs (43) and (44),
and (56) and (57) are also gauge equivalent to each other. Indekg@)ifsolves the system

(56) and (57), then the function

- 1 As+t 1 ab(a+1)+u

V(A = W(A s = =2 69
w=(5 "y e =g =2t (69)

satisfies the system (43) and (44) with the parameters

a=u+sr+rtw b=v+s—2sp— 2tu — xs°r — 2str — t’w c=w
p=ptsx+tr G =q — 2spx — 2tp — x*s’r — 2xstr — t%r r

so that the Painlé@/functionsk = —2r/w (60) andR = —27/¢ (53) coincide with each other.
For the integral operator (2), the transformation (69) yields its regular perturtitionK + R

with the regular rank 1 integral operat®mwith the kernelR (A, u) = f(1)g(u), wheref and
g are some parabolic cylinder functions.

5. Hypergeometric and confluent hypergeometric kernels

In this short section we note that the Garnier systems [6, 8] for PV and PVI, i.e.
B

WUt = Ag(h) + v oul=_ (70)
A—x A—Xx
with the matrix
1 B
Ao(k) = So3+ 7" (72)
in the case of PV, and
By By
Ag(L) = — + 72
o) = =+ — (72)

in the case of PVI, have the structure described by (20) and (21). Furthermore, the
corresponding ‘vacuum’ equations (13)

@, 1= Ag(h)

are solvable in terms of the Whittaker functions for (71) and in terms of hypergeometric
functions for (72). Thus there is no surprise that the Laguerre and Jacobi polynomial kernels
introduced by Tracy and Widom in [12] are related to PV and PVI.

Acknowledgments

The first author was partially supported by RFBR. He tlgaAkR Its for extremely useful
discussions and support. Both authors thank the staff of the Mathematical Sciences Research
Institute for hospitality during the authors’ visit when this work was done.

References

[1] Painlewe P 1900 Mmoire sur legquations differentielles dont I'integraléigerale est uniform8ull. Soc. Math.
France.28201-61

[2] Gambier B 1910 Sur legquations differentielles du second ordre et du premieréedeégnt I'integrale grérale
est a points critiques fixescta Math.33 1-55

[3] Ince E L 19590rdinary Differential EquationgNew York: Dover)

[4] Fuchs R 190T)ber lineare homogene Differentialgleichungen zweiter Ordnung mit dreiim Endlichen gelegenen
wesentlich singudren StellerMath. Annaler63 301-21



8156 A A Kapaev and E Hubert

(5]
(6]

(7]
(8]
El

(10]
(11]

(12]

(23]
[14]
(15]
[16]
(17]
(18]
(19]
[20]
(21]

(22]
(23]

(24]
(25]

[26]

Painle\e P 1906 Sur legquations differentielles du second ordrpoints critiques fixe€omptes Renduis43
1111-17

Garnier R 1912 Sur legquationes diffrentielles du troisime ordre dont l'irégrale @rerale est uniforme et
sur une classe dguationnes nouvelles d’ordre @ujeur dont I'inegrale @rérale a ses points critique fixes
Ann. Sci. Ec. Norm. Sup&x91-126

Boutroux P 1913 Recherches sur les transcendantes de M Raldéetude asymptotique deqjuationes
differéntielle du second ordrénn. Sci. Ec. Norm. Supe&1 99-159

Jimbo M and Miwa T 1981 Monodromy preserving deformation of linear ordinary differential equations with
rational coefficients IPhysicaD 2 407-48

Its A R, Kapae A A and Kitaev A VV 1988 The isomonodromic deformation method and special functions
Problems of Theoretical Physiesl Ill, ed Yu N Demkov, Yu V Novozhilov ad P P Painsky (Leningrad:
Leningrad State University Press) pp 182-92

Bateman H and Eklyi A 1953Higher Transcendental FunctiorfSlew York: McGraw-Hill)

ItsAR, Izergin A G, Korepn V E and Slavnov N A 1990 Differential equations for quantum correlation functions
Int. J. Mod. PhysB 4 1003-37

Its AR, Izergin A G, Korepn V E and Slavnov N A 1993 The quantum correlation function as thaction of
classical differential equationmportant Developments in Soliton The@ys A S Bkas ad V E Zakharov
(Berlin: Springer) pp 407-17

Tragy C Aand Widom H 1994 Fredholm determinants, differential equations and matrix n@al@isiun. Math.
Phys.16333-72

Tracy C A and Widom H 1999 Fredholm determinants, differential equations and matrix nieB8ls
xxx.lanl.govhepth/9306042 v3 2 Feb

Deift P 1999 Integrable operatdpsfferential Operators and Spectral Theory (M Sh. Birman’s 70th Anniversary
Collection) (AMS Translations, Advances in the Mathematical Sciences/al1}89, ed V Buslaev,
M Solomyak and D Yafaev, pp 69—-84

Bleher P, Bolibrukh A, Its A and Kapaev A, Linearization of P34 equation of Pa@l@ambier, in preparation

Jimbo M, Miwa T, Mori Y and Sato M 1980 Density matrix of an impenetrable Bose gas and the fifth Rainlev
transcenderPhysicaD 1 80-158

Mehta M L 1991Random Matrice€nd edn (San Diego: Academic)

Tragy C Aand Widom H 1994 Level-spacing distributions and the Airy keBmhmun. Math. Phy459151-74

Tragy C A and Widom H 1994 Level-spacing distributions and the Bessel k&agimun. Math. Phy4.61
289-309

Muskhelishvil N | 1953 Singular Integral Equation&nd edn (Groningen: Noordhoff)

Hubert E Factorization free decomposition algorithms in differential alg&b8gmbolic Computo appear

Flaschka H and NeweA C 1980 Monodromy- and spectrum preserving deformaticdBerhmun. Math. Phys.
7667-116

Grom& V | 1975 Theory of Painle&'s equatiorDiff. Uravnen.11373-6

Kitaev A V 1985 On the self-similar solutions of the modified nonlinear $dimger equatioffeor. Mat. Fizika
64347-69

Milne A E, Clarksa P A and Bassm A P 1997 Application of the isomonodromy deformation method to the
fourth Painlee equatiorinverse Problem43421-39

Kaup D J and Newell A C 1978 An exact solution for a derivative nonlinear &tihger equatiod. Math. Phys.
19798-801

Ablowitz M J, Ramani A and Segur H 1980 A connection between nonlinear evolution equations and ordinary
differential equations of p-typ& Math. Phys211006-15



