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Abstract. For the classical Painlevé equations, besides the method of similarity reduction of Lax
pairs for integrable partial differential equations, two ways are known for Lax pair generation. The
first is based on the confluence procedure in Fuchs’ linear ODE with four regular singularities
isomonodromy deformation which is governed by the sixth Painlevé equation. The second method
treats the hypergeometric equation and confluent hypergeometric equations as the isomonodromy
deformation equations for the triangular systems of ODEs, in whose non-triangular extensions give
rise to the Lax pairs for the Painlevé equations.

The theory of integrable integral operators suggests a new way of Lax pair generation for
the classical Painlevé equations. This method involves a special kind of gauge transformation that
is applied to linear systems which are exactly solvable in terms of the classical special functions.
Some of the Lax pairs we introduce are known, others are new. The question of gauge equivalence
of different Lax pairs for the Painlevé equations is considered as well.

1. Introduction

The Painlev́e equations [1–3], originally found as the only irreducible second-order ordinary
differential equations (ODEs)yxx = R(x, y, yx) rational inyx , algebraic iny and analytic in
x such that their general solutions have no movable branch points and essential singularities,
are known to govern the so-called isomonodromy deformations of certain linear differential
equations with rational coefficients. In other words, the Painlevé equations can be written in
the form of compatibility conditions for some over-determined linear systems of (2×2) matrix
equations which are now called the Lax pairs.

The first such system was found by Fuchs [4] who investigated the isomonodromy
deformations of the linear Fuchsian second-order scalar ODE with four singular points. Fuchs
revealed that preserving the monodromy properties of such a linear equation, with necessity,
leads to deformations of its coefficients in accord with the sixth Painlevé equation (PVI).
Observations that other Painlevé equations can be obtained by the use of certain scaling limits
from PVI [5, 3] gave rise to consideration in the articles of Garnier and Boutroux [6, 7] of the
confluences of singular points in the Fuchs’ linear equation for PVI and to the pairs of linear
equations for all the Painlevé equations [6] written in the equivalent matrix form by Jimbo and
Miwa [8]. Below, we call the pairs the Garnier systems, or the Garnier pairs.

Another way of generating Lax pairs for the Painlevé equations was introduced in [9].
The authors have shown that the Airy, Bessel and parabolic cylinder equations [10] can be
written as the compatibility conditions for triangular (2× 2) matrix systems. Non-triangular
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generalizations of these Lax pairs yield the Lax pairs for the Painlevé equations of the second,
third and fourth kind, respectively.

In the present paper, we explain a new scheme of generating Lax pairs of the classical
Painlev́e equations which allows us to elucidate another relationship between the linear and the
nonlinear special functions, i.e. between (confluent) hypergeometric functions and Painlevé
functions. The idea of this scheme comes from the fact that there exists a close relationship
between the integrable integral operators, the Riemann–Hilbert problem and isomonodromy
deformations of the linear equations with rational coefficients, discovered by Its, Izergin,
Korepin and Slavnov [11].

Consider an integral operator in the proper functional class on the set of finite intervals
0 = ∪nj=0(aj ; aj+1),

(Ky)(λ) =
∫
0

K(λ, µ)y(µ)dµ λ,µ ∈ 0 ⊂ C (1)

with the scalar kernel of the form introduced by Troy and Widom in [12] (for more general
situations see [13, 14])

K(λ,µ) = ϕ(λ)ψ(µ)− ϕ(µ)ψ(λ)
λ− µ (2)

where the vectors

f (λ) =
(
ψ(λ)

ϕ(λ)

)
g(µ) =

(−ϕ(µ)
ψ(µ)

)
(3)

are related to the linear differential equation

df

dλ
= A0(λ)f A0 =

(
a3 a+

a− −a3

)
(4)

with A0 rationally dependent onλ.
The first example of such kernels, introduced in [15] for a description of the quantum

correlation functions and in [16] for a description of the classical level spacing distribution
function in the ‘bulk’ of a spectrum of the Gaussian unitary ensemble (GUE), is the famous
sine kernel

K(λ,µ) = sin π(λ− µ)
π(λ− µ) (5)

with the exponent functionsϕ(λ) andψ(λ),

ϕ(λ) = eiπλ

2π i
ψ(λ) = e−iπλ

2π i
.

The corresponding linear matrix (equation (4)) is a constant digital matrix,

A0(λ) =
(

iπ 0
0 −iπ

)
.

Surprisingly, the Fredholm determinant of the integral operator with kernel (5) on the segment
(−x; x), det(I −Kχ(0;x)), where we denote byχ0 the characteristic function of the set0, is
related to the classical fifth Painlevé equation (PV).

The next examples of such a kind are presented in [17, 18]. The first is the Airy kernel

K(λ,µ) = Ai(λ)Ai ′(µ)− Ai ′(λ)Ai(µ)
λ− µ (6)
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whereAi(λ) andAi ′(λ) are the classical Airy function and its derivative [10], which describe
the level spacing distribution function for the GUE at the ‘edge’ of a spectrum. The second is
the Bessel kernel

K(λ,µ) = Jα(
√
λ)
√
µJ ′α(
√
µ)−√λJ ′α(

√
λ)Jα(

√
µ)

2(λ− µ) (7)

for the ‘hard edge’ of this spectrum atλ = 0. In the Airy kernel case, in our notation, the
functions

ϕ(λ) = Ai(λ) ψ(λ) = Ai ′(λ)
with the Airy functionAi(λ) form the vector solution of (4), with the matrixA0(λ) given by

A0(λ) =
(

0 λ

1 0

)
. (8)

In the Bessel kernel case, the functions

ϕ(λ) = Jα(
√
λ)/2 ψ(λ) =

√
λJ ′α(
√
λ)

with the Bessel functionJα(x) yield the vector solution of (4) with

A0(λ) =
(

0 1/4λ
−1 + (α2/λ) 0

)
. (9)

As shown in [17, 18], Fredholm determinants of such operators on the half-infinite interval
(x,+∞) are related to the second and third Painlevé equations (PII, PIII) respectively.

Some kernels, ‘beyond Airy’, introduced in [12] are expressed in terms of Hermite,
Laguerre and Jacobi polynomials and related to the fourth, fifth and sixth Painlevé equations
(PIV, PV and PVI, respectively).

Following [12, 13], let us introduce the functionsF andG as the solutions of the integral
equationsF = ϕ +KF ,G = ψ +KG, i.e.

F = (1−K)−1ϕ G = (I −K)−1ψ (10)

and the matrix functionY (λ) by the use of the Cauchy integral

Y (λ) = I −
∫
0

F (µ)gT(µ)

µ− λ dµ. (11)

It follows from the properties of the Cauchy integrals (see, e.g. [19]) that this function is
holomorphic outside0, normalized to the unit at infinity, may have logarithmic or integrable
algebraic singularities at the pointsaj ∈ ∂0 and is characterized by the jump on0

Y+(λ) = Y−(λ)H(λ) H(λ) = I − 2π i

(−ψ(λ)ϕ(λ) ψ2(λ)

−ϕ2(λ) ψ(λ)ϕ(λ)

)
λ ∈ 0. (12)

The special form of the jump immediately leads to a very specific gauge transformation of the
matrix (2× 2) equation

d8

dλ
= A0(λ)8. (13)

Indeed, let8(λ) be a fundamental solution of (13), i.e. det8(λ) = 1. Then the vector
f (λ) = (ψ(λ);ϕ(λ))T is given by the product

f (λ) = 8(λ)p p =
(
q

p

)
= constant. (14)

At the same time, the vectorg(λ) = (−ϕ(λ);ψ(λ))T is given by the product

g(λ) = (8(λ)−1)Tq q =
(−p
q

)
= constant. (15)



8148 A A Kapaev and E Hubert

Therefore, the product8−1(λ)H(λ)8(λ) does not depend onλ

8−1(λ)H(λ)8(λ) = I − 2π i

(−pq q2

−p2 pq

)
= constant. (16)

Thus the new (2× 2) matrix function

9(λ) = Y (λ)8(λ) (17)

has constant jump on0 and satisfies a linear differential equation [14]

d9

dλ
= A(λ)9 (18)

with the matrixA, rational inλ, related to the ‘vacuum’ matrixA0 by the equation

A = Y A0Y
−1 + YλY

−1. (19)

The above-mentioned Riemann–Hilbert problem for9(λ) (for details, see [14]) contains
natural isomonodromy deformation parametersaj ∈ ∂0, so that besides the equation inλ (18)

∂9

∂λ
= A(λ)9 ≡

(
Ã0(λ) +

∑
j

Aj

λ− aj

)
9 (20)

whereAj are constant matrices and̃A0(λ) is a matrix, rational inλ, with no singularity ataj ,
the function9(λ) satisfies

d9 = U(λ)9 ≡
(
−
∑
j

Aj

λ− aj daj

)
9. (21)

The compatibility condition for the system (20) and (21),

dA− ∂U
∂λ

+ [A,U ] = 0 (22)

which holds identically inλ, gives rise to the system of nonlinear differential equations called
the system of isomonodromy deformations [8].

Below, we show that, in the simplest situations, such systems reduce to second-order
ODEs that are equivalent to some of the classical Painlevé equations. The investigation
described in this paper was essentially simplified by the use of symbolic computations based
on simple manipulations onMaple V. The reductions of the compatibility condition systems
(equation (22)) to Painlevé equations are computed according to an algorithm in differential
algebra as presented in [20]. In practice we used theMaple V.5.1packagediffalg, which is
the implementation of such an algorithm. Information about this package can be found on the
web pagehttp;//daisy.uwaterloo.ca/˜ehubert/Diffalg.

Actually, the Lax pair for the 34th Painlevé equation (P34) from the list of Painlevé and
Gambier [3] that is related to the Airy kernel was found ‘by hands’ in [14] and is the gauge
equivalent to the pair of Flaschka and Newell [21] for PII. The new Lax pair for PIII is found
by use of symbolic computation. The Lax pair for PIV, related to the integral operator with
the Weber–Hermite kernel of the first kind (41) and (42), coincides up to a diagonal gauge
transformation with the pair of Garnier [6, 8]. The Weber–Hermite kernel of the second kind
(54) and (55) leads to another Lax pair for PIV evaluated by the use of symbolic computations.
We show that this Lax pair, as well as the pair for PIV found in [23], are both gauge equivalent
to the pair of Garnier. Finally, we observe that the Garnier systems [6, 8] for PV and PVI are
related in the very same way to the Whittaker and hypergeometric kernels, respectively.
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2. Airy kernel and PII

The simplest non-trivial example of the Lax pairs related to the integral operators (1) with the
Tracy–Widom kernel (2) and (3) is the pair coming from consideration of the operator with
the Airy kernel (6) on the ray (x;∞). This example is found and investigated in full detail in
[14]. Here, we give an overview.

The ‘vacuum’ matrix, equation (13), has the form of (8), and because the gauge matrix
Y (λ) tends toI at infinity and the contour0, in this case, consists of the ray (x;∞), the
perturbed matrix equation is characterized by the matrix (19) of the Jordan form in the main
order at infinity, with the only regular singularity atλ = x:

9λ9
−1 = A =

(
a λ + b
1 −a

)
+

1

λ− x
(
p q

r −p
)

(23)

9x9
−1 = U = − 1

λ− x
(
p q

r −p
)
. (24)

The compatibility condition of (23) and (24) is equivalent to the system of equations

b = −r − a2

p = ar + ε
√
−r3 + xr2 − ar + ν2 ε2 = 1

q = r2 − a2r − xr + a − 2aε
√
−r3 + xr2 − ar + ν2

ax = r
rx = 2ε

√
−r3 + xr2 − ar + ν2 ν = constant. (25)

The last two equations of system (25) yield the second-order ODE for the functionr

rxx = (rx)
2

2r
− 4r2 + 2xr − 2ν2

r
(26)

which up to scaling change ofr andx coincides with the classical P34 equation from the list
of Painlev́e–Gambier [13].

The Lax pair (23) and (24) is gauge equivalent to the Lax pair of Flaschka and Newell
[21]

∂9FN

∂ξ
= A9FN ∂9FN

∂t
= U9FN (27)

with the matrix coefficientsA andU defined by

A =
( −i(4ξ2 + t + 2y2) i(4yξ + (α/ξ))− 2z
−i(4yξ + (α/ξ))− 2z i(4ξ2 + t + 2y2)

)
U =

(−iξ iy
−iy iξ

)
. (28)

The compatibility condition of (27) and (28),

yt = z zt = 2y3 + ty − α α = constant (29)

is equivalent to PII

ytt = 2y3 + ty − α α = constant. (30)

The gauge equivalence of the Lax pairs (23) and (24), and (27) and (28) is given by

9(λ, x) = 2σ3/6

(
1 u

0 1

)
ξσ3/2

1√
2

(
1 −i
−i 1

)
9FN(ξ, t)

λ = −22/3ξ2 − 2−1/3t x = −2−1/3t (31)
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where the functionu(t) satisfies the equation

ut +
1

2

(
z− y2 − t

2

)
= 0. (32)

The function9(λ, x) defined by (31) solves the system (23) and (24) with the coefficients

a = 21/3(y + u) b = −22/3(y + u)2 + 2−1/3

(
z + y2 +

t

2

)
p = −α

2
+

1

4
− u

(
z + y2 +

t

2

)
q = 21/3u

[
α − 1

2
+ u

(
z + y2 +

t

2

)]
r = −2−1/3

(
z + y2 +

t

2

)
. (33)

Inversion of the gauge transformation (31) is given by the formula

9FN(ξ, t) = 1√
2

(
1 i
i 1

)
e−i(π/4)σ3(λ− x)−σ3/4

(
1 v

0 1

)
9(λ, x)

ξ = eiπ/22−1/3(λ− x)1/2 t = −21/3x (34)

where the functionv(t) is defined by the equation

v = −p ± ν
r
≡ −21/3µ. (35)

The function9FN defined by (34) solves the system (27) and (28) with the parameters

y = 2−1/3(a + v) α = 1
2 ± 2ν

z = 2−2/3x − 21/3r − 2−2/3(a + v)2. (36)

The equations (33) and (36) establish the known Bäcklund transformation between PII
and P34 [3].

Note that theλ-equation in the Garnier system for PII found in [6, 8] has the only irregular
singularity at infinity. This fact suggests there is no algebraic gauge transformation between
the Lax pairs of Flaschka and Newell [21] and Garnier [6, 8].

3. Bessel kernel and PIII

Let us consider the integral operator on0 = (x;∞) with kernel (7) related to the ‘vacuum’
equation (equation (13)) with the matrixA0 given by (9). SinceA0 is a Jordan matrix at infinity
and the matrix of gauge transformationY (λ) behaves likeI there, the matrixA, coming from
the matrix representation for the Bessel equation, is also Jordan at infinity and has the only
singularity atλ = x (for our convenience, we have used before some constant transformation
to make the Jordan block of the standard form):

9λ9
−1 = A =

(
0 1
0 0

)
+

1

λ

(
a b

c −a
)

+
1

λ− x
(
p q

r −p
)

(37)

9x9
−1 = U = − 1

λ− x
(
p q

r −p
)
. (38)

The compatibility condition for the system (37) and (38) is equivalent to the system of equations

b = (a2 − µ2)
y − 1

ρ
c = − ρ

y − 1

p = x

2

yx

y − 1
− ay q = −(p2 − ν2)

y − 1

ρy
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r = ρy

y − 1

ax + a
yx

y − 1
= x

4

(yx)
2

y(y − 1)2
+

1

x

(
µ2y − ν

2

y

)
ρ,µ, ν = constant (39)

where the functiony satisfies the second-order ODE

yxx =
(

1

2y
+

1

y − 1

)
y2
x −

yx

x
+

2(y − 1)2

x2

(
µ2y − ν

2

y

)
+

2ρ

x
y. (40)

Equation (40) is the special case of PV [1] with the parameters

α = 2µ2 β = −2ν2 γ = 2ρ δ = 0.

It is well known [22] that equation (40) is equivalent to the general PIII equation.
Since the known Lax pair for the PIII equation [6, 8] has two irregular singularities at zero

and infinity, there is no algebraic gauge transformation between the Garnier system for PIII
and (37) and (38).

4. Lax pairs for PIV

In this section we describe several Lax pairs that come from applying the gauge
transformations (17) and (19) to the matrix equations that are exactly soluble in terms of
parabolic cylinder functions and show their algebraic gauge equivalence to the Garnier system.

4.1. Weber–Hermite kernel and PIV. Case 1

Let us consider the integral operator (1) with the kernel (2) on the ray0 = (x;∞)whereϕ(λ),
ψ(λ) are given by the parabolic cylinder functions [10]

ϕ(λ) = wν(
√

2λ) ψ(λ) = wν−1(
√

2λ)
d2wν(z)

dz2
=
(
z2

4
− ν − 1

2

)
wν(z). (41)

For an integerν = N and polynomialwN(z) ez
2/2, such a kernel was introduced in [12].

Becausewν−1(z) = (
√

2/v)(w′ν(z)+ (z/2)wν(z)), wherev 6= 0 does not depend onz, the
vectorf (λ) = (ψ(λ);ϕ(λ))T solves equation (4) with the matrix

A0(λ) =
(
λ u

v −λ
)

u = −2ν

v
. (42)

The gauge transformation (17) yields the Lax pair

9λ9
−1 = A(λ, x) =

(
λ + a b

c −λ− a
)

+
1

λ− x
(
p q

r −p
)

(43)

9x9
−1 = U(λ, x) = − 1

λ− x
(
p q

r −p
)

(44)

which is compatible if

ax = 0

bx = 2q

cx = −2r

px = br − cq
qx = 2(x + a)q − 2bp

rx = −2(x + a)r + 2cp.

(45)
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This system allows the integrals
a = a0 = constant
a2 + bc + 2p = ρ = constant
p2 + qr = γ 2 = constant.

(46)

Moreover, without loss of generality, we put

a = a0 = 0 (47)

that is equivalent to a simultaneous shift ofλ andx in the constanta0. As to other integrals in
(46), the parameterρ describes the formal monodromy of the function9 at infinity, whileγ
has the same sense for the singular pointλ = x. Using the integrals, we excludep,

p = ρ − bc
2

(48)

and one of the functionsr or q,

r = 1

4q
(4γ 2 − (bc − ρ)2) or q = 1

4r
(4γ 2 − (bc − ρ)2) (49)

to reduce the system (45) to one for the functionsb, c andq (or r):
bx = 2q,

cx = −1

q

(
2γ 2 − 1

2
(bc − ρ)2

)
qx = 2xq + b(bc − ρ)

or


bx = 1

r

(
2γ 2 − 1

2
(bc − ρ)2

)
cx = −2r

rx = −2xr − c(bc − ρ).
(50)

Elementary computation shows that the functionsQ = −2q/b andR = −2r/c satisfy the
classical PIV equation [3]

Q = −2q

b
: Qxx = Q2

x

2Q
+

3

2
Q3 + 4xQ2 + 2(x2 + ρ + 1)Q− 8γ 2

Q
(51)

with the parameters

a = −ρ − 1 β = 16γ 2.

Moreover,b satisfies the first-order, linear ODE and becomes the so-called auxiliary function
bx

b
= −Q (52)

while all other coefficients are determined uniquely:

c = 1

b

(
−1

2
Qx +

1

2
Q2 + xQ + ρ

)
p = −1

2
(bc − ρ)

q = −1

2
bQ r = 1

4q
(4γ 2 − (bc − ρ)2).

Similarly,

R = −2r

c
: Rxx = R2

x

2R
+

3

2
R3 + 4xR2 + 2(x2 + ρ − 1)R − 8γ 2

R
(53)

which coincides with PIV [3] with the parameters

α = −ρ + 1 β = 16γ 2

while
cx

c
= R b = 1

c

(
1

2
Rx +

1

2
R2 + xR + ρ

)
p = −1

2
(bc − ρ)

r = −1

2
cR q = 1

4r
(4γ 2 − (bc − ρ)2).



A note on the Lax pairs for Painlevé equations 8153

4.2. Weber–Hermite kernel and PIV. Case 2

Another kind of integral operator on the ray0 = (x;∞) with the kernel (2) is determined by
the functionsϕ(λ), ψ(λ) given by the parabolic cylinder function and its derivative:

ϕ(λ) = wν(
√

2λ) ψ(λ) =
√

2w′ν(
√

2λ)
d2wν(z)

dz2
=
(
z2

4
− ν − 1

2

)
wν(z). (54)

Now, the vectorf (λ) = (ψ(λ), ϕ(λ))T solves (4) with the matrix

A0(λ) =
(

0 λ2 − 2ν − 1
1 0

)
. (55)

The gauge transformation (17) yields the Lax pair of the following form:

9λ9
−1 = A(λ, x) =

(
aλ + u λ2 + bλ + v
w −aλ− u

)
+

1

λ− x
(
p q

r −p
)

(56)

9x9
−1 = U(λ, x) = − 1

λ− x
(
p q

r −p
)

(57)

with the compatibility condition

ax = r
bx = −2p

ux = (b + x)r

vx = −2p(b + x) + 2aq

wx = −2ar

px = xr(b + x) + vr − wq
qx = −2xp(b + x) + 2xaq + 2uq − 2pv

rx = −2xar − 2ur + 2pw

(58)

which allows the integrals
a2 +w = 1

2au + r + bw = 0
2ap + u2 + (b + x)r + vw − a = ρ ρ = constant
p2 + qr = γ 2 γ = constant.

(59)

As before, we chose the concrete values of the constantsa2 + w and 2au + r + bw without
loss of generality because these parameters are related to the affine transformations of theC2

space of pairs (λ, x); so putting these constants to unity and zero, respectively, we do nothing,
but fix a certain origin and scales.

In contrast, the parametersρ andγ describe formal monodromy of the9-function at
infinity and at the pointλ = x, respectively.

Using the integrals (59), we reduce the system (58) to the system of four first-order
equations for the functionsa, b, p andr, and observe that the ratioR = −2r/w satisfies the
PIV equation [3]

R = −2r

w
: Rxx = R2

x

2R
+

3

2
R3 + 4xR2 + 2(x2 + ρ)R − 8γ 2

R
(60)

with the parameters

α = −ρ β = 16γ 2
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while the functionsa andb satisfy the first-order ODE and become auxiliary functions

ax

a2 − 1
= 1

2
R bx = a2 − 1

2a
Rb +

1

2
Rx + xaR +

a2 + 1

4a
R2.

The rest of the coefficients are determined uniquely by the expressions

u = 1− a2

4a
(R − 2b) w = 1− a2 p = −1

4
Rx − 1

2
(xa + u)R − 1

4
aR2

q = 2
p2 − γ 2

(1− a2)R
v = 1

1− a2
(a + ρ − 2ap − u2) +

1

2
(b + x)R.

4.3. Gauge equivalence of the Lax pairs for PIV

4.3.1. Gauge equivalence of the Garnier system and (43) and (44).Jimbo and Miwa [8]
presented the Lax pair originated in the work of Garnier [6], which, after proper change of
notation and the shift ofλ in x, can be written in the following form:

∂9JM

∂λ
= A9JM ∂9JM

∂x
= U9JM (61)

with the connection coefficientsA andU defined as follows:

A =
(

λ u
2
u
(z− τ) −λ

)
+

1

λ− x
( −z − uy

2
2(z2−θ2)

uy
z

)
(62)

U = −xσ3− 1

λ− x
( −z − uy

2
2(z2−θ2)

uy
z

)
. (63)

The matrixA (62) with proper change of notation coincides with the matrixA (43), but the
matrix U (63) contains an extra term−xσ3 in comparison withU (44). This term can be
eliminated by the diagonal gauge transformation that is independent ofλ, i.e.

9(λ, x) = ex
2σ3/29JM(λ, x). (64)

4.3.2. Gauge equivalence of an alternative Lax pair and (43) and (44).Another Lax pair for
PIV found by Kitaev [23] and later by Milneet al [24],

∂9K

∂λ
= A9K ∂9K

∂x
= U9K (65)

A =
( 1

2λ
3 + λ(x + uv) + α

λ
i(λ2u + 2xu + u′)

i(λ2v + 2xv + v′) − 1
2λ

3 + λ(x + uv) + α
λ

)
(66)

U =
( 1

2λ
2 + uv iλu
iλv − 1

2λ
2 − uv

)
(67)

comes from the Lax pair of Kaup and Newell [25] for the modified nonlinear Schrödinger
(MNS) equation by the use of similarity reduction of the MNS equation to the PIV equation
of Ablowitz et al [26]. This pair is also gauge equivalent to the Lax pair (61)–(63). Indeed, if
9K(λ, x) satisfied (65)–(67), then

9(λ, x) = ex
2σ3/2

(
1 iu
0 1

)
(2(λ− x))σ3/89K(

√
2(λ− x), x) (68)

satisfies our first-degree Lax pair (43) and (44) with

a = 0 b = iex
2
(u′ − u2v) c = ie−x

2
v p = α

2
+

1

4
− xuv +

uv′

2

q = −iu ex
2

(
α +

1

2
− xuv +

uv′

2

)
r = e−x

2

iu

(
− xuv +

uv′

2

)
.
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4.3.3. Gauge equivalence of (43) and (44), and (56) and (57).The Lax pairs (43) and (44),
and (56) and (57) are also gauge equivalent to each other. Indeed, if9(λ) solves the system
(56) and (57), then the function

9̃(λ) =
(

1 λs + t
0 1

)
9(λ) s = 1

a + 1
t = 2

ab(a + 1) + u

(a − 2)(a + 1)2
(69)

satisfies the system (43) and (44) with the parameters

ã = u + sr + tw b̃ = v + s − 2sp − 2tu− xs2r − 2str − t2w c̃ = w
p̃ = p + sx + tr q̃ = q − 2spx − 2tp − x2s2r − 2xstr − t2r r̃ = r
so that the Painlev́e functionsR = −2r/w (60) andR̃ = −2r̃/c̃ (53) coincide with each other.
For the integral operator (2), the transformation (69) yields its regular perturbationK 7→ K+R
with the regular rank 1 integral operatorR with the kernelR(λ,µ) = f (λ)g(µ), wheref and
g are some parabolic cylinder functions.

5. Hypergeometric and confluent hypergeometric kernels

In this short section we note that the Garnier systems [6, 8] for PV and PVI, i.e.

9λ9
−1 = A0(λ) +

B

λ− x 9x9
−1 = − B

λ− x (70)

with the matrix

A0(λ) = 1

2
σ3 +

B0

λ
(71)

in the case of PV, and

A0(λ) = B0

λ
+

B1

λ− 1
(72)

in the case of PVI, have the structure described by (20) and (21). Furthermore, the
corresponding ‘vacuum’ equations (13)

8λ8
−1 = A0(λ)

are solvable in terms of the Whittaker functions for (71) and in terms of hypergeometric
functions for (72). Thus there is no surprise that the Laguerre and Jacobi polynomial kernels
introduced by Tracy and Widom in [12] are related to PV and PVI.
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